# Convective mass transfer for turbulent flow (acidizing)

## Input(s)

$$D_{A}$$: Diffusion Coefficient of Component A $$\left(\mathrm{cm}^{2} / \mathrm{s}\right)$$

$$D_{E}$$ : Effective Diffusion Coefficient of Component A $$\left(\mathrm{cm}^{2} / \mathrm{s}\right)$$

$$d c_{a} / d Y$$ : Concentration Gradient $$\left(\mathrm{mol} / \mathrm{cm}^{4}\right)$$

$$c_{a}$$ : Concentration of Flowing Acid $$\left(\mathrm{mol} / \mathrm{cm}^{3}\right)$$

$$<c_{a}>$$ : Average Concentration of Flowing Acid $$\left(\mathrm{mol} / \mathrm{cm}^{3}\right)$$

$$<c_{a}(w)>$$ : Average Concentration of Flowing Acid $$\left(\mathrm{mol} / \mathrm{cm}^{3}\right)$$

$$V_{N}$$ : Fluid Velocity Normal to the Surface $$(\mathrm{cm} / \mathrm{s})$$

$$\left\langle V_{N}\right\rangle$$ : Average Fluid Velocity Normal to the Surface $$(\mathrm{cm} / \mathrm{s})$$

$$K_{g}$$ : Effective Mass Transfer Coefficient $$(\mathrm{cm} / \mathrm{s})$$

## Output(s)

$$U_{a, y}$$: Diffusion Flux of a Component A in $$\mathrm{Y}$$ direction $$\left(\mathrm{mol} / \mathrm{cm}^{2} \mathrm{~s}\right)$$

$$\left\langle U_{a, y}\right\rangle$$ : Average Diffusion Flux of a Component A in Y direction $$\left(\mathrm{mol} / \mathrm{cm}^{2} \mathrm{~s}\right)$$

## Formula(s)

$\begin{gathered} <U_{a, y}>=-D_{A} \frac{d<c_{a}>}{\partial Y}+<c_{a} V_{N}> \\ <U_{a, y}>=-D_{E} \frac{d<c_{a}>}{d Y}+<c_{a}><V_{N}> \\ <U_{a, y}>=K_{g}\left[<c_{a}>-<c_{a}(w)>\right]+<c_{a}><V_{N}> \end{gathered}$

## Reference(s)

Williams, B. B., Gidley, J. L., & Schechter, R. S. (1979). Acidizing fundamentals. Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers of AIME, Page 23.

## Related

### Convective mass transfer for laminar flow (acidizing)

An unhandled error has occurred. Reload 🗙