Barenblatt-Chorin universal velocity distribution

Input(s)

vv *: Velocity of Fluid (ft/s)(\mathrm{ft} / \mathrm{s})

Re: Reynolds Number (ft)

v: Molar Velocity (ft/s)

L: Length (ft)

Output(s)

vxv_{x}: Velocity in X-direction (dimensionless)

Formula(s)

vxv=((130.5)ln(Re)+52)(( Lvv)32ln(Re))\frac{\mathrm{v}_{\mathrm{x}}}{\mathrm{v}_{*}}=\left(\left(\frac{1}{3^{0.5}}\right) * \ln (\mathrm{Re})+\frac{5}{2}\right) *\left(\left(\mathrm{~L} * \frac{\mathrm{v}_{*}}{\mathrm{v}}\right)^{\frac{3}{2 * \ln (\mathrm{Re})}}\right)

Reference(s)

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena (Second Ed.). John Wiley & Sons, Chapter: 5, Page: 161.

An unhandled error has occurred. Reload 🗙