Analysis of a post-fracture - Constant-rate flow test with boundary effects

Input(s)

qg\mathrm{q}_{\mathrm{g}}: Gas Flow Rate (MSCF/day)

Bg\mathrm{B}_{\mathrm{g}}: Gas formation Volume Factor (RB/MSCF)(\mathrm{RB} / \mathrm{MSCF})

m\mathrm{m}: Slope from Curve (psi/cycle)

mL\mathrm{m}_{\mathrm{L}}: Slope from linear Region of Curve (psi/cycle)

pai\mathrm{p}_{\mathrm{ai}}: Initial Adjusted Well Pressure (psi)

pahr\mathrm{p}_{\mathrm{ahr}}: Adjusted Well pressure at t=1 h(psi)t=1 \mathrm{~h}(\mathrm{psi})

pD\mathrm{p}_{\mathrm{D}}: Dimensionless Pressure (dimensionless)

Ø: Porosity (dimensionless)

ct\mathrm{c}_{\mathrm{t}}: Compressibility (1/psi)

rw\mathrm{r}_{\mathrm{w}}: Radius of Wellbore (ft)(\mathrm{ft})

μ\mu: Viscosity (cP)(\mathrm{cP})

h\mathrm{h}: Formation Thickness ( ft\mathrm{ft} )

tLfDt_{L f D}: Time of end of Linear or Pseudo Radial flow from Plot (dimensionless)

Δta\Delta \mathrm{t}_{\mathrm{a}}: Adjusted Delta Time from Derivative Curve (h)

Output(s)

k\mathrm{k}: Permeability (mD)(\mathrm{mD})

LfPR\mathrm{L}_{\mathrm{fPR}}: Length of Fracture for Pseudo Radial Flow (ft)

LfL\mathrm{L}_{\mathrm{fL}}: Length of Fracture for Linear Flow (ft)

LfMP\mathrm{L}_{\mathrm{fMP}}: Length of Fracture from Match Point Analysis (ft)(\mathrm{ft})

s\mathrm{s}: Skin Factor (dimensionless)

ΔPaMP\Delta \mathrm{P}_{\mathrm{a}_{\mathrm{MP}}}: Adjusted Pressure Difference at Match Point from Plot (psi)

Formula(s)

k=162.6qg Bgμm h LfPR=1.151((paipahrm)log(kμctrw2)+3.23)LfL=2rw2.71sLfMP=4.064qgBgmL hk0.5((μct)12)s=(141.2qg Bgμk h)(pD)ΔPaMP=((0.0002637kμct)(ΔtatLfD))12\begin{gathered} \mathrm{k}=162.6 * \mathrm{q}_{\mathrm{g}} * \mathrm{~B}_{\mathrm{g}} * \frac{\mu}{\mathrm{m} * \mathrm{~h}} \\ \mathrm{~L}_{\mathrm{fPR}}=1.151 *\left(\left(\frac{\mathrm{p}_{\mathrm{ai}}-\mathrm{p}_{\mathrm{ahr}}}{\mathrm{m}}\right)-\log \left(\frac{\mathrm{k}}{\emptyset * \mu * \mathrm{c}_{\mathrm{t}} * \mathrm{r}_{\mathrm{w}}^{2}}\right)+3.23\right) \\ \mathrm{L}_{\mathrm{fL}}=2 * \mathrm{r}_{\mathrm{w}} * 2.71^{-\mathrm{s}} \\ \mathrm{L}_{\mathrm{fMP}}=4.064 * \mathrm{q}_{\mathrm{g}} * \frac{\mathrm{B}_{\mathrm{g}}}{\mathrm{m}_{\mathrm{L}} * \mathrm{~h} * \mathrm{k}^{0.5}} *\left(\left(\frac{\mu}{\varnothing} * \mathrm{c}_{\mathrm{t}}\right)^{\frac{1}{2}}\right) \\ \mathrm{s}=\left(141.2 * \mathrm{q}_{\mathrm{g}} * \mathrm{~B}_{\mathrm{g}} * \frac{\mu}{\mathrm{k}} * \mathrm{~h}\right) *\left(\mathrm{p}_{\mathrm{D}}\right) \\ \Delta \mathrm{P}_{\mathrm{a}_{\mathrm{MP}}}=\left(\left(\frac{0.0002637 * \mathrm{k}}{\varnothing * \mu * \mathrm{c}_{\mathrm{t}}}\right) *\left(\frac{\Delta \mathrm{t}_{\mathrm{a}}}{\mathrm{t}_{\mathrm{LfD}}}\right)\right)^{\frac{1}{2}} \end{gathered}

Reference(s)

Lee, J., Rollins J.B., and Spivey J.P. 2003, Pressure Transient Testing, Vol. 9, SPE Textbook Series, Vol. 9, Henry L. Doherty Memorial Fund of AIME, Richardson, Texas, SPE, Chapter: 6, Page: 121.


Related

An unhandled error has occurred. Reload 🗙